William J. Parton (Colorado State UniÍersity)


Model category gbCSM
Plant part Whole_plant
Scale Field
Licence upon_request
Operating system NA
Programming language Cpp
Format of model inputs and outputs NA
Species studied Maize, Cotton, Alfalfa, Soybean, Wheat, Hay
Execution environment NA

Scientific article

DAYCENT and its land surface submodel: description and testing
William J. Parton,Melannie Hartman,Dennis Ojima,David Schimel
Global and Planetary Change, 1998 View paper

Model description

DAYCENT is the daily time-step version of the CENTURY biogeochemical model. DAYCENT simulates fluxes of C and N among the atmosphere, vegetation, and soil. Key submodels include soil water content and temperature by layer, plant production and allocation of net primary production (NPP), decomposition of litter and soil organic matter, mineralization of nutrients, N gas emissions from nitrification and denitrification, and CH4 oxidation in non-saturated soils. Flows of C and N between the different soil organic matter pools are controlled by the size of the pools, C/N ratio and lignin content of material, and abiotic water/temperature factors. Plant production is a function of genetic potential, phenology, nutrient availability, water/temperature stress, and solar radiation. NPP is allocated to plant components (e.g., roots vs. shoots) based on vegetation type, phenology, and water/nutrient stress. Nutrient concentrations of plant components vary within specified limits, depending on vegetation type, and nutrient availability relative to plant demand. Decomposition of litter and soil organic matter and nutrient mineralization are functions of substrate availability, substrate quality (lignin %, C/N ratio), and water/temperature stress. N gas fluxes from nitrification and denitrification are driven by soil NH4 and NO3 concentrations, water content, temperature, texture, and labile C availability.

Some case studies

Some studies using DAYCENT:

- Del Grosso, S.J., Parton, W.J., Mosier, A.R., Hartman, M.D., Brenner, J., Ojima, D.S., Schimel, D.S., 2001a. Simulated interaction of carbon dynamics and nitrogen trace gas fluxes using the DAYCENT model. In: M. Schaffer, M., L. Ma, L. S. Hansen, S. (Eds.), Modeling Carbon and Nitrogen Dynamics for Soil Management. CRC Press, Boca Raton, Florida, pp. 303-332.

- Del Grosso, S.J., Parton, W.J., Mosier, A.R., Hartman, M.D., Keough, C.A., Peterson, G.A., Ojima, D.S., Schimel, D.S., 2001b. Simulated effects of land use, soil texture, and precipitation on N gas emissions using DAYCENT. In: R.F. Follett, R.F., Hatfield, J.L. (Eds.), Nitrogen in the Environment: Sources, Problems, and Management. Elsevier Science Publishers, The Netherlands, pp. 413-431.

- Del Grosso, S.J., Ojima, D.S., Parton, W.J., Mosier, A.R., Peterson, G.A., Schimel, D.S., 2002. Simulated effects of dryland cropping intensification on soil organic matter and greenhouse gas exchanges using the DAYCENT ecosystem model. Environ. Pollut. 116, S75-S83.

- Del Grosso, S.J., Mosier, A.R., Parton, W.J., Ojima, D.S., 2005. DAYCENT model analysis of past and contemporary soil N2O and net greenhouse gas flux for major crops in the USA. Soil Tillage and Research 83, 9-24, doi:10.1016/j.still.2005.02.007.

- Parton, W.J., Holland, E.A., Del Grosso, S.J., Hartman, M.D., Martin, R.E., Mosier, A.R., Ojima, D.S. Schimel, D.S., 2001. Generalized model for NOx and N2O emissions from soils. J. Geophys. Res. 106(D15), 17403-17420.